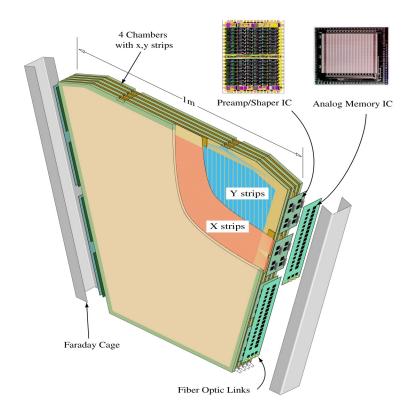
Atlas CSC ASMII Critical Design Review

Sachin Shrirang Junnarkar Brookhaven National Laboratory Presented at BNL June 24, 04

Overview


- Introduction to ASMII
- 2. CSC electronics specifications
- 3. Design Evolution
- 4. Final design
- 5. ASMII test results
- 6. ROD Interface
- 7. COTS and ASIC qualification status and plans
- 8. Production, QA/QC plans
- 9. ASMII test procedures
- 10. Production Schedule
- 11. Conclusion

ATLAS CSC with Electronics

ATLAS CSC with Electronics

ASMII FACTS

- 5 boards per chamber
 - 4 x-strip (2 per side)
 - 1 y-strip
- 160 boards per system (128 x-strip, 32 y-strip)
- 192 Channels per ASMII

CSC electronics specifications

$$ENC \leq 0.5 \ fC = 3100 \ e -$$

Trigger rate 100KHz

KEY MILESTONES

January 2001 :ASMII-a prototype

■ February 2002 :ASMII-b prototype

December 2002 : Critical Design Review

August 2003 :ASMII-C prototype

May 2004 :System integration test

June 2004 :Production readiness review

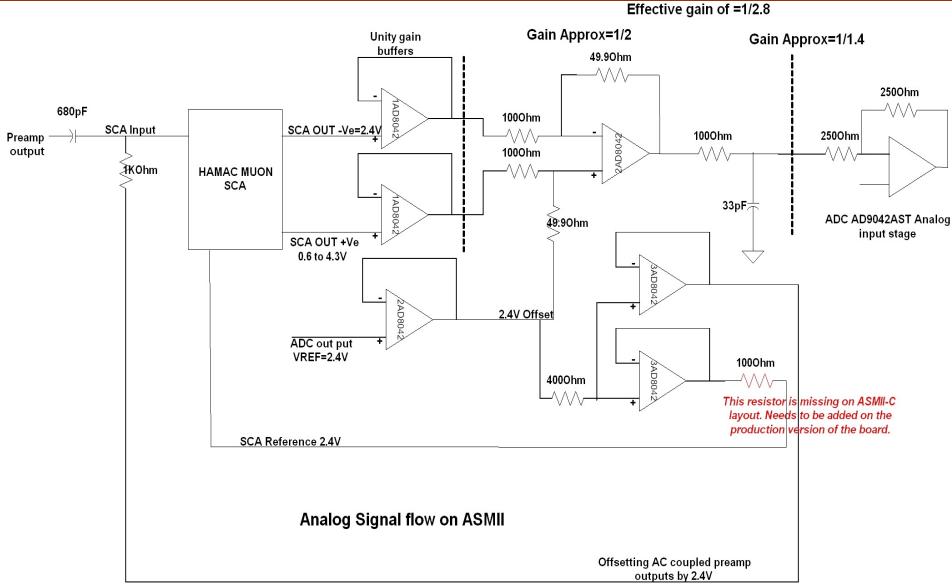
October 2004 :ASMII Production complete

ASMII Design Evolution

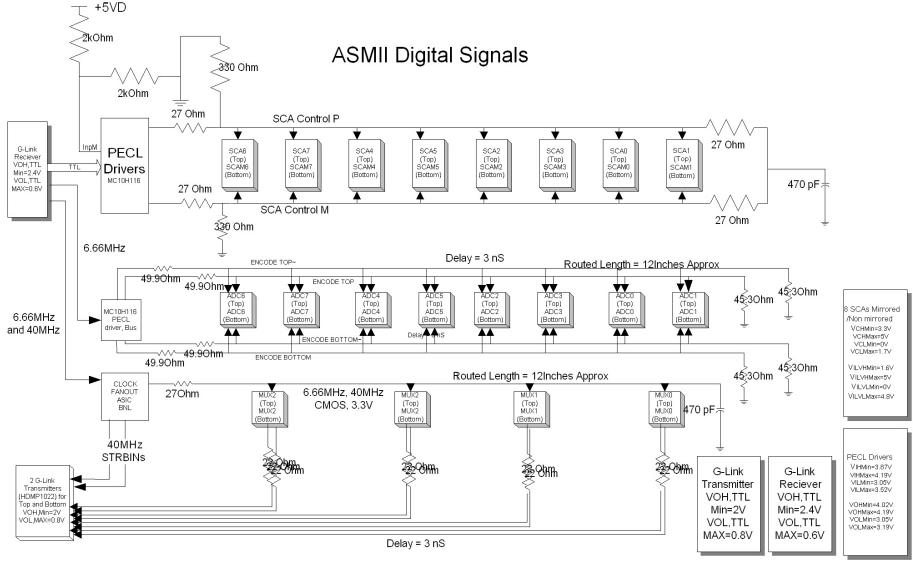
Objectives Met

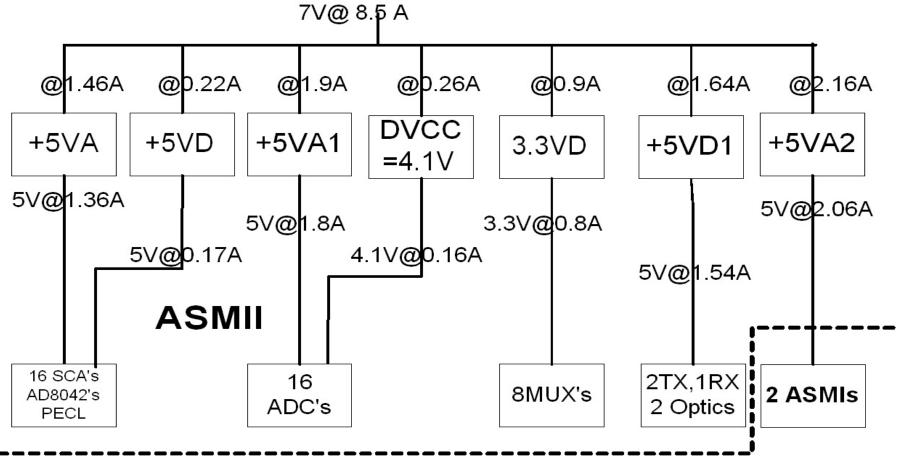
- Eliminated the FPGA and RAD SOFT buffers
- Reduced noise
- Characterize Noise
- Meets CSC requirements
- Final design

Objectives Met


- Developed SCA Controller
- Tested SCA (muon mode)
- Preamp/SCA interface
- Characterized ADC
- 192 Channels
- Established readout architecture

Brookhaven Science Associates U.S. Department of Energy


Signal Flow on ASMII


Digital signals on ASMII

Power Distribution on ASMII

Power:

Total:59.43W

CSC ASM PACK Power Distribution

Brookhaven Science Associates U.S. Department of Energy

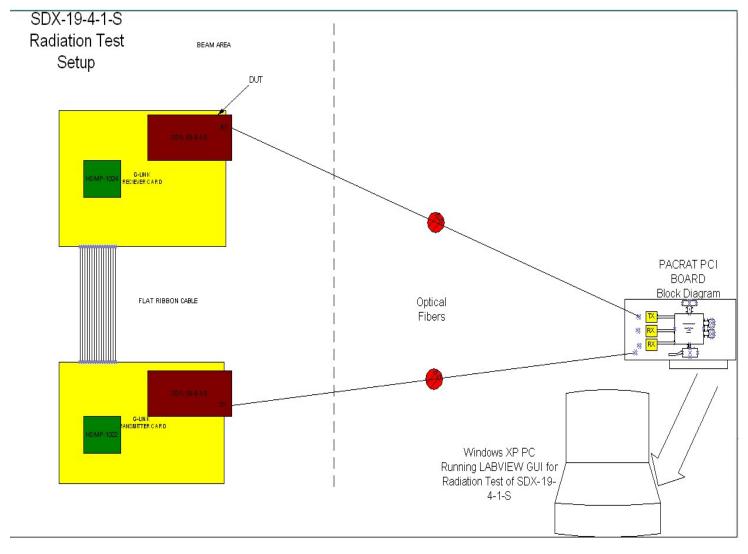
ROD Interface

There are three fiber optic links. 1 from ROD Transition Module (TM) to ASM II carrying 2 links from ASM II to ROD TM Carrying Digitized data ROD Transition Module has HDMP-1032a Transmitter per ASM II, and 2 HDMP-1034a R Following table shows the piouts on ASM II and corresponding pins on the ROD End. Downlink(From ROD TM to ASM II) HDMP1032a HDMP1024 Pin Name Pin # ASM II Nai Pin # 46 RD CLK TXIOI TX[1] 47 SD 70 TX[2] 50 RD 69 68 TX[3] 51 G1 67 TX[4] 52 G0 53 WA7 66 TX[5] TX[6] 54 WA6 65 TX[7] 55 W A 5 60 TX[8] 58 WA4 59 TX[9] 59 WA3 58 TX[10] 60 WA2 57 TX[11] 61 WA1 56 TX[12] 62 WA0 55 63 TRIG DAT TX[13] 54 2 ADC CLK TX[14] 51 TX[15] 3 SCAWCLF 50 Uplink 1(From ASM II to ROD TM RX 1) Uplink 2(From ASM II to ROD TM HDMP1022 HDMP1034a HDMP1022 HDMP103[∠] ASM II Naı Pin # 1034Name Pin # ASMII Nan Pin # 1034Name Pin # LINK1_0 59 RX1[0] 3 LINK2_0 3 59 RX2[0] LINK1_1 LINK1_2 LINK1_3 2 2 LINK2 1 58 RX1[1] 58 RX2[1] 57 RX1[2] 63 LINK2 2 57 RX2[2] 63 56 RX2[3] 56 RX1[3] 62 LINK2 3 62 LINK1 4 55 RX1[4] 61 LINK2 4 55 RX2[4] 61 LINK1_5 54 RX1[5] 60 LINK2 5 54 RX2[5] LINK1 6 5 RX1[6] 59 LINK2 6 5 RX2[6] 59 58 LINK2_7 LINK1_7 51 RX1[7] 51 RX2[7] 58 LINK1 8 50 RX1[8] 55 LINK2 8 50 RX2[8] 55 LINK1_9 49 RX1[9] 54 LINK2 9 49 RX2[9] 54 LINK1_10 53 LINK2_10 48 RX1[10] 48 RX2[10] 53 47 RX1[11] 47 RX2[11] 52 LINK2_11 52 LINK1_11 LINK1_12 51 46 RX1[12] 51 LINK2_12 46 RX2[12] LINK1_13 45 RX1[13] 50 LINK2_13 45 RX2[13] 50 47 LINK 1_14 40 RX1[14] 47 LINK2_14 40 RX2[14] 46 LINK1_15 39 RX1[15] 46 LINK2 15 39 RX2[15] TRIGDATA 70 RXDATA 44 TRIGDATA 70 RXDATA TRIGDATA is the pin used to validate the data coming from the ASM II. This pin is driven

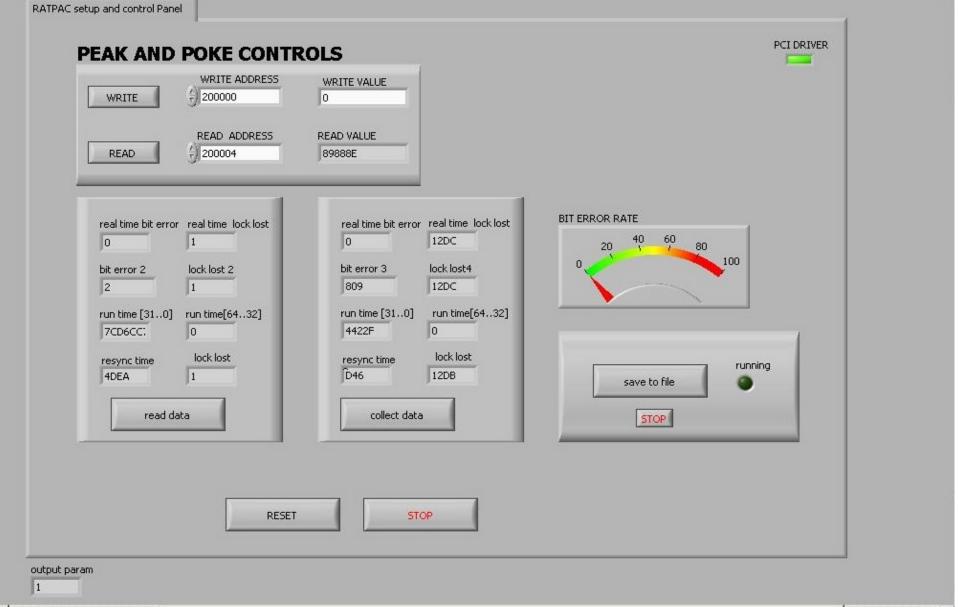
ASM II ADC's are continuously digitizing. Only those samples corresponding to triggere The pin is activated only when ASM II is transmitting the triggered samples.

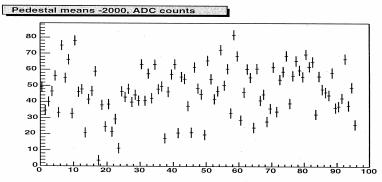
COTs on ASMII

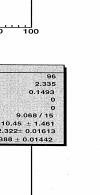
Radiation qualification status		
COTS	Responsible	Status
AD9042 ADC[2]	SMU	Complete
AD8042 Dual opamps[3]	Nevis	Complete
10H116 differential line driver[3]	Nevis	Complete
HDMP- 1022 serialiser[4][5][6]	SMU	Complete
HDMP- 1024		
deserialiser[4][5][6][7]	UCI	Complete
SDX-19-4-1-S Optical Transceiver		
Transmitter[4][5][6]	Nevis	Complete
SDX-19-4-1-S Optical Transceiver		
Reciever[4][5][6]	BNL	Now

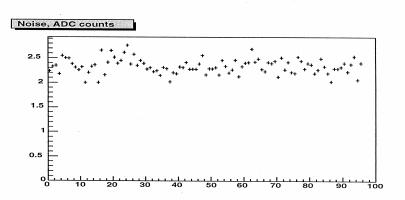

ASICs on ASMII

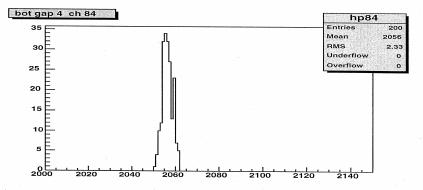
Radiation qualification status			
ASICs	Technology	Responsible	Status
HAMA/MUON SCA	DMILL	Nevis	Complete
ASM2MUX	HP-0.5u	BNL	Complete
			Same as
BNL Clock fanout	HP-0.5u	BNL	ASM2MUX


Radiation test setup for Optical Receiver


GUI for RX test setup






Test Results

ASMII- 5A

Figure 6a: Pedestal means -2000ADC
counts vs 96 channels, averaged over 200
events.

Entries

Underflow

Overflow

Constant

Sigma

Mean

RMS

Figure 6b:RMS noise in ADC counts vs 96 channels, RMS of 200 events.

Figure 6c:RMS noise distribution for 96 channels. Mean=2.335, RMS=0.1493, Sigma=0.1388

Figure 6d: Channel number 84 selected at random. Pedestal histogram for 200 events.

rms noise distribution

12

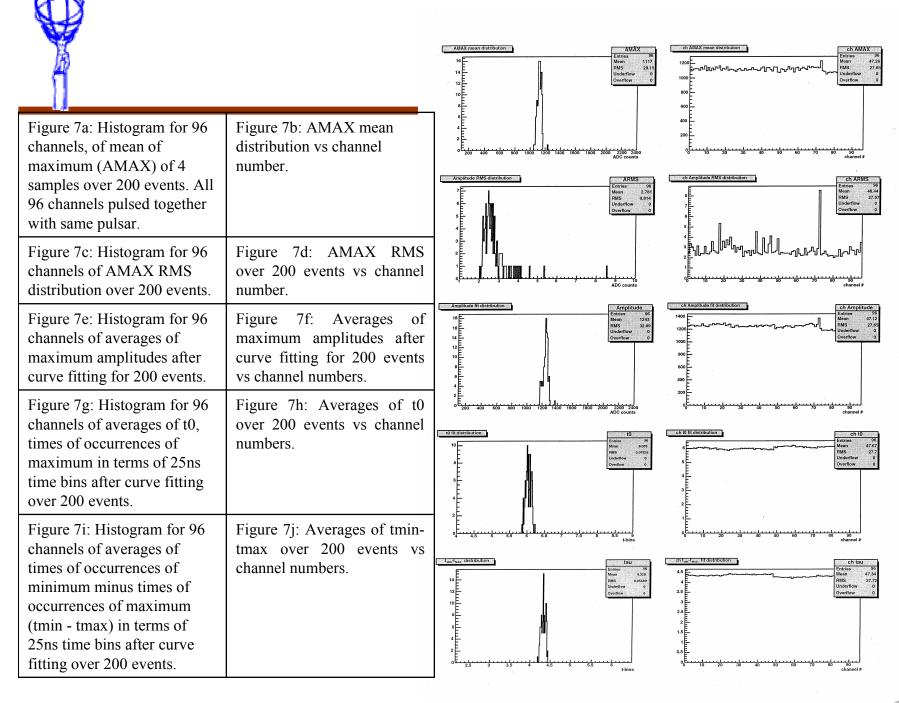
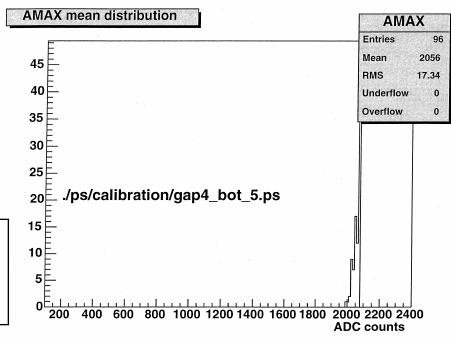
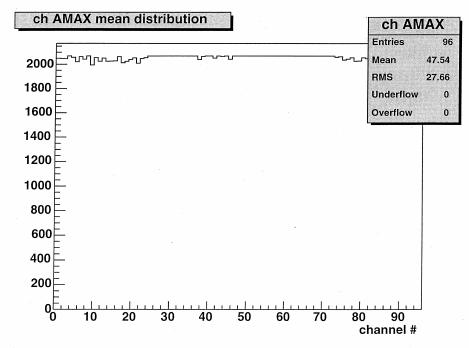
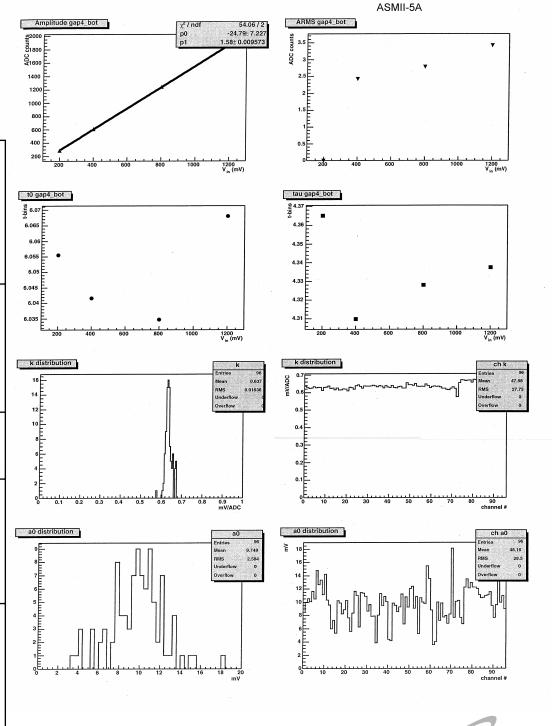
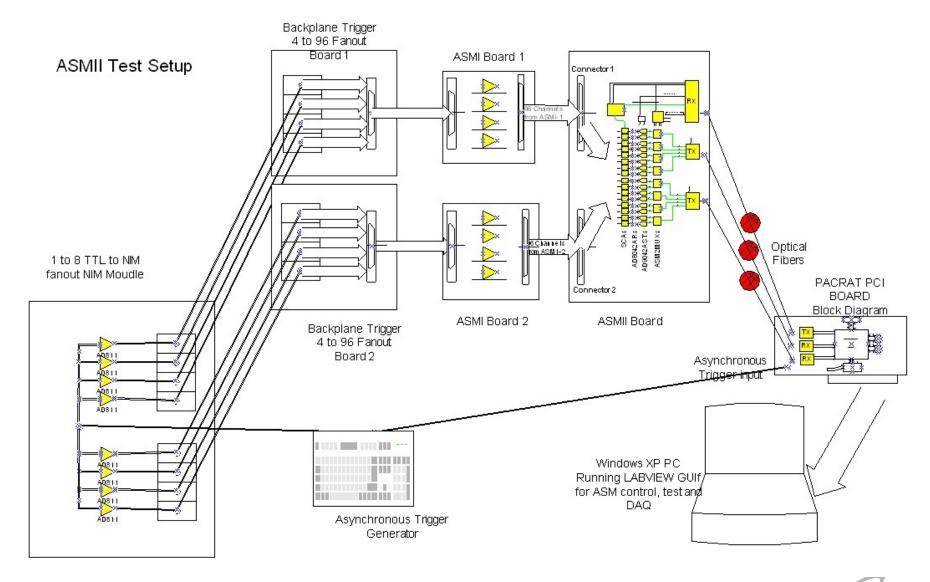




Figure 8a: Histogram for 96 channels of averages of maximum at saturation AMAXsat in ADC counts over 200 events.


Figure 8b: AMAXsat vs channel numbers.

- U.I				
Figure 9a: Average over 50 events for 96 channels of maximum amplitude in terms of ADC counts vs input voltage to the preamps in mV.	Figure 9b: Average for 96 channels of RMS noise in ADC counts over 50 events in the maximum amplitude vs input voltage to the preamps in mV.			
Figure 9c: Average time of occurrence of maximum amplitude for 96 channels over 200 events vs input voltage to the preamps.	Figure 9d: Average tmin - t max over 50 events for 96 channels vs input voltage to the preamps.			
Figure 9e: Histogram of mV at the preamp output per ADC count for 96 channels.	Figure 9f: mV at the preamp output /ADC count vs channel number.			
Figure 9g: Histogram for 96 channels of averages of t0, times of occurrences of maximum in terms of 25ns time bins after curve fitting over 200 events.	Figure 9h: Averages of t0 over 200 events vs channel numbers.			
Figure 9i: Histogram of Y intercepts in ADC counts for 96 channels after straight line fit to the individual linearity graph like in figure 9a.	Figure 9j: Y intercepts in ADC counts for individual linearity straightline fits of individual channels vs channel numbers.			



Summary of results

	RMS								
	Pedestal						t0		
	Noise Mean		RMS Pedestal			Channel	/spread,		Number of
ASMII	in ADC		noise in	Peak	Fit	to channel	25nS time		Bad
number	Counts	Sigma	electrons	RMS ADC	Amplitude	Spread	bins	ADC count/mV	channels
2A	2.7	0.19	2774	2.87	1260	2.10%	6.23	0.621	1
2B	2.63	0.15	2545	3.06	1336	1.30%	6.34	0.585	2
3A	2.45	0.15	2448	2.74	1297	4.60%	6.31	0.604	1
3B	2.43	0.16	2372	2.8	1343	2.50%	6.3	0.59	None
4A	2.75	0.2	2748	3.47	1298	4.00%	6.18	0.604	2
4B	2.74	0.19	2778	2.93	1259	6.80%	6.26	0.613	2
5A	2.32	0.14	2445	2.78	1243	2.60%	6.04	0.637	None
5B	2.36	0.13	2592	3	1191	2.60%	6.07	0.664	None

Production Test Setup

Production plan: Fabrication

- Board size: 17.125" x 4.804"
- Surface Finish Electroless Ni, Immersion Au
- 2,907 Holes, smallest hole 0.016" dia
- Test Points 2,325
- Line Width & Spacing, 0.006" & 0.006"
- Ten (10) Layer, Tetra II Hi-Temp Epoxy 0.072"
 Thick
- 25 days for fabrication of 180 boards.

Assembly QA/QC

- All components will be mounted and trimmed to IPC 610.
- Components will be baked before assembly
- BNL to supply CADD files and all the components.
- First article of 10 will be produced first and tested.
- The rest of the 170 boards will be assembled and received in batches
- last batch expected in the week of 22nd Aug, 2004.
- Vendor to perform visual inspection

Test procedure

- Before powering on, each board will be tested for possible shorts between GND and between power planes with a multi-meter.
- Boards will be tested with a set of two well characterized ASMIs. Bad channels will be flagged and boards will be repaired in instrumentation, or sent back to the assembler.
- Working boards will be burnt in for 164 hours together with ASMIs.
- A report with test results similar to one presented will be generated on an accepted board.
- Accepted boards will be provided with a bar-coded ID in compliance with the CERN/ATLAS standard.

Schedule

ASMII Board production timeline			
Task	Duration Days	Start	Finish
Fabrication Start	25days	1-Jul-04	26-Jul-04
Parts procurement & kit preperation	34days	1-Jul-04	4-Aug-04
SDX Transciever radiation testing	1day	TBD	TBD
SDX Transciever procurement	56days	1-Jul-04	26-Aug-04
Assembly Start	28days	27-Jul-04	24-Aug-04
Mount SDX Transcievers	5days	25-Aug-04	30-Aug-04
Recieve 1st articles	14 days	27-Jul-04	10-Aug-04
Evaluate 1st articles	7days	8-Aug-04	15-Aug-04
ASMII Board testing	60days	30-Aug-04	29-Oct-04

Conclusion

- Final ASMII design has evolved over past 3 years through three different versions
- ASMII performance at the system integration test was excellent, and meets all CSC specifications
- Test procedures, quality assurance and control plans have been chalked out.
- ASMII board is ready for production.

